1. PRESENTATION
Dear Customer,
Thank you for having chosen a PREX THERM
RSW boiler.
This manual has been prepared to provide you
with information, warnings and suggestions on
the installation, correct use and maintenance of
the boiler. Please therefore read it thoroughly
and keep it with care for future reference.
In your interest, we suggest that you carefully
observe the contents of this manual, so as to
be able to get the most from this high quality
product. The Manufacturer declines all liability
and the warranty will be void in the event
where the instructions described in this
manual are not observed.

2. GENERAL WARNINGS
- This instruction manual is an integral part
 of the product, and provides important instruc-
 tions for installation, operation and maintenance.
- This appliance must only be used for the pur-
 poses it has been specifically designed for.
- This appliance is used to heat water to
 below-boiling temperatures at atmospheric
 pressure, and must be connected to a cen-
 tral heating and/or domestic hot water
distribution system, according to its cha-
 racteristics, performance and heat output.
- Before installation, check that the boiler has
 not been damaged due to handling and
 transport.
- The boiler must be installed in compliance
 with the standards in force, by suitably quali-
 fied personnel.
- Before performing any cleaning or mainten-
 ance operations, disconnect the appliance from
 the mains power supply.
- Ferroli s.p.a is not liable for any damage to per-
 sons and/or things due to errors in
 installation, control, maintenance and
 improper use.
- The boiler and the corresponding system must
 be commissioned by authorised personnel.
- Commissioning is performed in order to check
 the correct operation of all the control devices.
- Qualified personnel must be contacted if the
 appliance is not used for an extended period.

Standards
The installer must observe the local standards
in force as regards: the choice of the site of
installation of the boiler, the compliance with the
required ventilation conditions; the tightness
of the connection to the chimney; the connections
of the fuel lines, electrical systems and any
other relevant safety standards.

Warranty conditions
The warranty is only valid if the standards and
the suggestions for use described in this manual
are observed. Failure to observe such stan-
dards and suggestions will void the warranty.
The warranty excludes all damage due to cor-
rosion from the acidic condensate of the pro-
ducts of combustion or the formation of depo-
sits caused by the use of hard or aggressive
water, as such are solely due to the operation
of the system.

3. CERTIFICATION
The CE Mark attests that Ferroli appliances
conform to the requirements specified in the
applicable European directives.
In particular, this appliance conforms to the fol-
lowing EEC directives:
- Gas directive (90/396 EEC)
- Efficiency directive (92/4/EEC)
- Low voltage directive 73/23 EEC
 (amended by 93/68)
- Electromagnetic compatibility directive 89/336
 (amended by 93/68)

4. TECHNICAL AND CONSTRUCTIONAL
 SPECIFICATIONS, DIMENSIONS
4.1 Description of the appliance
The construction of the PREX THERM RSW
series boilers guarantees high output and effi-
ciency at low flue gas temperatures, thus ensu-
ing reduced polluting emissions.
The appliances are made according to the EN
303 standard, part 1.
The main technical elements of the design are:
- the careful design of the shapes, to ensure an
 optimum ratio between the combustion vol-
 umes and the heat exchange surfaces
- the choice of materials used, for the long life of
 the boiler.
The boilers feature pressurised combustion,
with three flue passes, a horizontal-cylinder con-
figuration and flame reversal in the furnace,
completely cooled; the flame produced by the
burner is reversed peripherally towards the
front, from where the burned gas enters the fire
pipes. At the outlet, the gas is col-
llected in the smokebox and is then sent to the
chimney. The combustion chamber is always
pressurised during the operation of the burner.
For the pressure values, see the tables on page
16, under the column Flue gas side pressure drop.
The flue and the flue stack fitting must be made
in compliance with the standards and the legisla-
tion in force, using rigid pipes that are resistant to
high temperatures, condensate and mechanical
stress, and are airtight. (Fig. 1)

4.2 Operating principle
The PREX THERM RSW boilers are fitted with a
closed cylindrical furnace, in which the flame pro-
duced by the burner is reversed peripherally
towards the front, from where the burned gas
enters the fire tubes. At the outlet, the gas is col-
llected in the smokebox and is then sent to the
chimney. The combustion chamber is always
pressurised during the operation of the burner.

4.3 Technical specifications - Dimensions -
Water fittings
Key (Fig. 2 and 3)
1 Control panel
2 Burner mounting flange
3 Smoke box cleaning door
4 Flame inspection window
T1 Water delivery
T2 Water return
T3 Expansion vessel connection
T4 Discharge/exhaust boiler
T5 Chimney connection
T6 Burner connection

4.4 Identification
The boiler can be identified from the:
- Document envelope
This is applied to the door, and contains:
 TECHNICAL MANUAL
 WARRANTY CERTIFICATE
 LABELS WITH BARCODE
 RATING LABEL
 CONSTRUCTION CERTIFICATE
 (certifying that the water pressure tests have
 been passed)
- Rating label
This describes the technical specifications
and the performance of the appliance (Fig. 4).
It is included in the document envelope and
MUST BE APPLIED by the installer, when
installation is complete, to the top front part
of one of the side panels of the casing, in a visi-
table position.
If the label is lost, contact the Ferroli
Technical Service for a duplicate.

Tampering with or the removal or absence of
rating labels or other means enabling the unit to
be identified causes problems during installation
and maintenance.

Key (Fig. 4)
1 Document envelope
PREXTERM RSW

Heat output

- min kW 92 107 152 190 240 300 350 399 525 600 720 820 940 1060
- max kW 99, 116, 163 205, 261 326 378 432 507 567, 598 684 781 895 1014 1140

Heat input

- min kW 64, 75 107, 137, 147, 170, 199, 245, 245, 277, 325 364, 417 502 566 651 731
- max kW 99, 116, 163 205, 261 326 378 432 507 567, 598 684 781 895 1014 1140

Boiler total capacity

- fit 117
- bar 523
- kW 5, 69 68, 73

Loss pressure water side

- press mbar 10, 5°C
- press mbar 4, 15°C
- press mbar 3, 20°C

Loss pressure smoke side

- press mbar 0, 5

Max working pressure

- bar 8

Net weight

- kg 205

FITTINGS

<table>
<thead>
<tr>
<th>T1-T2</th>
<th>1/4"</th>
<th>1/4"</th>
</tr>
</thead>
<tbody>
<tr>
<td>fitting</td>
<td>1,5"</td>
<td></td>
</tr>
<tr>
<td>Øe mm</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>Ø mm</td>
<td>220</td>
<td></td>
</tr>
<tr>
<td>mm</td>
<td>220</td>
<td></td>
</tr>
</tbody>
</table>

DIMENSIONS

A	800
B	800
C	800
D	800
E	800
F	800
G	800
H	800
I	800
J	800
K	800
L	800
M	800
N	800
O	800
P	800
Q	800
R	800

Net weight

- kg 1835

FITTINGS

<table>
<thead>
<tr>
<th>T1-T2</th>
<th>1/2"</th>
<th>1/2"</th>
</tr>
</thead>
<tbody>
<tr>
<td>fitting</td>
<td>1"</td>
<td></td>
</tr>
<tr>
<td>Øe mm</td>
<td>400</td>
<td></td>
</tr>
<tr>
<td>Ø mm</td>
<td>400</td>
<td></td>
</tr>
<tr>
<td>mm</td>
<td>400</td>
<td></td>
</tr>
</tbody>
</table>

DIMENSIONS

A	1430
B	2460
C	1580
E	233
F	274
G	890
H	715
I	2967
L	120
M	1738
N	762
O	500
P	700
Q	1000
R	2420

* Min. passage dimensions through the heating plant door.

Heat rise.

In case of matching with heavy oil burners, the indicated heat efficiency have to be reduced of more or less 10%.

PREXTERM RSW

Heat output

- min kW 1250
- max kW 1480

Heat input

- min kW 1250
- max kW 1480

Boiler total capacity

- fit 1270

Loss pressure water side

- press mbar 10, 15°C
- press mbar 36

Loss pressure smoke side

- press mbar 6, 5

Max working pressure

- bar 8

Net weight

- kg 1835

FITTINGS

<table>
<thead>
<tr>
<th>T1-T2</th>
<th>1/2"</th>
<th>1/2"</th>
</tr>
</thead>
<tbody>
<tr>
<td>fitting</td>
<td>1"</td>
<td></td>
</tr>
<tr>
<td>Øe mm</td>
<td>400</td>
<td></td>
</tr>
<tr>
<td>Ø mm</td>
<td>400</td>
<td></td>
</tr>
<tr>
<td>mm</td>
<td>400</td>
<td></td>
</tr>
</tbody>
</table>

DIMENSIONS

A	1430
B	2460
C	1580
E	233
F	274
G	890
H	715
I	2967
L	120
M	1738
N	762
O	500
P	700
Q	1000
R	2420

* Min. passage dimensions through the heating plant door.

Heat rise.

In case of matching with heavy oil burners, the indicated heat efficiency have to be reduced of more or less 10%.
5. INSTALLATION

5.1 Packaging
The PREXTHERM RSW boilers are supplied complete with: door, smokebox and insulation already installed, while the panels are contained in a separate cardboard box. The instrument panel and the layer of ceramic fibre for the burner draught tube are placed inside the combustion chamber.

Model 1250-3600 RSW boilers are supplied complete with the insulation and casing. The instrument panel is supplied in a cardboard box and positioned inside the combustion chamber.

5.2 Handling
The PREXTHERM RSW boilers are fitted with eyebolts for lifting. Make sure the hoisting equipment used is suitable for the weight being lifted. Before positioning the boiler, remove the wooden base support by unscrewing the fastening screws (Fig. 5).

5.3 Boiler room (Fig. 6)
The PREXTHERM RSW boilers should be installed in rooms exclusively used for this purpose, in accordance with the technical standards and legislation in force and featuring adequately sized ventilation openings. The ventilation openings must be permanent, directly communicating with the outside and located in both a high and low position, in compliance with the standards in force.

The location of the ventilation openings, the fuel supply, power and lighting circuits must comply with the legislation in force in relation to the type of fuel used. To assist the cleaning of the flue gas circuit, free space must be left at the front of the boiler no less than the length of the boiler body and, in any case, never less than 1300 mm, checking that with the door open at 90° the distance between the door and the adjacent wall (X), is at least equal to the length of the burner. The boiler support surface must be perfectly horizontal. A flat cement base should be used that is able to support the overall weight of the boiler plus the water content. For the dimensions of the base, see the distances R x Q (table of dimensions). If the burner is supplied with gas fuel whose specific weight is higher than air, the electrical parts must be located more than 500 mm from the floor. The appliance cannot be installed outdoors as it is not designed to operate outside and does not feature automatic frost protection systems.

INSTALLATION IN OLD SYSTEMS OR SYSTEMS TO BE UPGRADED
When the boiler is installed in old systems or systems to be upgraded, check that:
- The flue stack is suitable for the temperature of the products of combustion, calculated and manufactured according to the standards in force, airtight, insulated and not blocked or choked.
- The electrical system has been installed in compliance with the relevant standards by qualified persons.
- The fuel supply line and any tanks are made according to the relevant standards.
- The expansion vessel/vessels can completely absorb the expansion of the fluid contained in the system.

- The flow-rate, discharge head and the direction of the flow of the circulating pumps are suitable.
- The system is washed, cleaned of slime, fouling, vented and watertight.
- A treatment system is available for special supply/top-up water requirements (see the reference values).

5.4 Discharge of the products of combustion (Fig. 7)
The flue and the flue fitting must be made in compliance with the standards and the legislation in force, using rigid pipes that are resistant to high temperatures, condensate and mechanical stress, and are airtight.
The flue must ensure the minimum negative pressure specified by the standards in force, considering “zero” pressure at the fitting to the flue. Unsuitable or incorrectly sized flues may increase the noise produced due to combustion, generate problems involving condensation and negatively affect the combustion parameters.

Non-insulated flues are a source of potential danger. The joint seals should be made using materials that can resist temperatures of at least 250°C. Suitable points for measuring the flue gas temperature and analysing the products of combustion must be prepared in the connection between the boiler and the flue. As regards the cross-section and the height of the chimney, refer to the national and local standards in force.

5.5 Water connections

5.5.1 Supply water
The chemical characteristics of the supply and top-up water are fundamental for the correct operation and the safety of the boiler. The water should be treated using suitable systems.
The values shown in the table below can be used as references.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL HARDNESS</td>
<td>ppm</td>
</tr>
<tr>
<td>ALKALINITY</td>
<td>mg/l</td>
</tr>
<tr>
<td>PH</td>
<td>8-9</td>
</tr>
<tr>
<td>SILICA</td>
<td>ppm</td>
</tr>
<tr>
<td>CHLORIDES</td>
<td>ppm</td>
</tr>
</tbody>
</table>

The water used in the central heating system must be treated in the following cases:
- Very large systems
- Very hard water
- Frequent introduction of water to top up the system.

If, in these cases, the system needs to be partially or completely emptied, it must be refilled with treated water. To control the volume of water automatically refilled, an hour counter should be installed. The most common phenomena that occur in heating systems are:
- Lime scale deposits
Lime scale tends to concentrate at the points where the temperature of the wall is higher. Due to their low heat conductivity, lime scale deposits cause a reduction in heat exchange to the extent that even when just a few millimetres thick, the heat exchange between the flue gas and the water is limited, bringing an increase in the temperature of the parts exposed to the flame and consequently breakages (cracks) on the tube plate.

- Corrosion on the water side
Corrosion of the metal surfaces on the water side of the boiler is due to the dissolution of iron into its ions. The presence of dissolved gases, in particular oxygen and carbonic dioxide, play and important part in this process. Softened and/or demineralised water provides protection against lime scale and other deposits, however does not protect against corrosion. The water therefore must be treated with corrosion inhibitors.

5.5.2 Central heating outlet/return pipes
The dimensions of the outlet and return pipes are shown for each model of the boiler, in the table of DIMENSIONS.
Check that the system features a sufficient number of vent openings. The boiler fittings must not be stressed by the weight of the connection pipes to the system, and consequently special supports must be installed.

5.5.3 System fill/drain pipes
To fill and drain the boiler, a cock can be connected to fitting T4 at the rear (see the drawing of the DIMENSIONS).

5.5.4 Expansion vessel and safety valve pipes
The PREXTHERM RSW boilers are suitable for operation with forced water circulation, both with open and closed expansion vessels. An expansion vessel is always required, to allow for the increase in water volume due to heating.
In the first case, the height of the hydrostatic column must be at least 3 metres above the boiler casing and must have a sufficient capacity to contain, between the surface of the water in the vessel and the overflow pipe, the increase in volume of all the water in the system.
High and narrow vessels are better, as they ensure minimum contact between the water surface and the air, thus reducing evaporation.
In the second case, the capacity of the closed expansion vessel must be calculated considering:
- the total volume of water contained in the system
- the maximum operating pressure of the system
- the maximum operating pressure of the expansion vessel
- the initial pre-charge pressure of the expansion vessel
- the maximum operating temperature of the boiler (the maximum temperature of the thermostat fitted on the panel is 90° C; when performing this calculation, use the value 100°C).

The expansion pipes connect the expansion vessel to the system. These pipes that run from fitting T3 (see the table of Dimensions), must not be fitted with on-off valves. On fitting T3, or on the outlet pipe, within 0.5 metres from the first flange, install a safety valve sized for the capacity of the boiler and in compliance with the local standards in force. No type of shut-off device may be installed between the boiler and the expansion vessel, and between the boiler and the safety valves, while the valves should calibrated for activation at values no higher than the maximum admissible operating pressure.
5.5.5 Recirculating pump (Fig. 8)

The condensation of the water vapour contained in the flue gas leaving the boiler (condensate) occurs when the return water temperature is less than 55°C and is significant above all when starting in the morning, after the boiler has been off all night. This condensate is acidic and corrosive and, over time, attacks the metal plate on the boiler. Consequently, a recirculating pump with the function of preventing condensate should be installed between the outlet and return fittings, upstream of any mixing valve.

The pump must ensure, when the system is operating, a flow-rate of between 20 and 30% of the total; it must also ensure a return water temperature no less than 55°C, while the required discharge head is quite low, as it only needs to overcome the resistance of the boiler and the valves. To measure the effective central heating return inlet temperature for the purpose of controlling the condensate prevention pump or managing the functions for getting the system to stable temperature operation, a probe socket must be fitted at a distance equivalent to 3-5 times the diameter of the return pipe upstream of the water coupling.

5.6 Opening and adjusting the front door

For the PREXTERM RSW models 92÷1060, the door is hinged, fastened and reversed as shown in Fig. 9.

The following operations are required:
- The door is fitted with four equal hinges, the pins (pos. 3) are inserted either on the right or the left of the support (pos. 1).
- For the direction of opening, remove the pins on the right or the left, and then fasten the door with the screws (pos. 6).
- Axial adjustments are possible by screwing in or loosening the fastening nuts.

Key (Fig. 9)
1 Hinge support bracket
2 Hinge
3 Hinge pin
4 Fastening screw and nut
5 Bush
6 Closing bolt and washer

For PREXTERM RSW models 1250÷3600, the door is hinged, fastened and reversed as shown in Fig. 10.

The following operations are required:
- Un Screw the nuts (pos. 8) on the side that closes, and open the door.
- Tighten the nuts (pos. 8) again on the side that closes, and close the door.
- Tighten the spare nuts (supplied with the boiler accessories) in pos. 8, making sure they are fully tightened.
- Un Screw the nuts (pos.7) corresponding to the part that acts as a hinge.
- Open the door and unscrew the nuts (pos. 6).
- Close the door and use a pair of nuts (pos. 7).

Key (Fig. 10)
1 Fastening dowel
2 Hinge pin support nut
3 Hinge support ears
4 Hinge pin
5 Bolt welded to the pin
6 Bolt-door fastening nut
7 Bolt-door fastening nut
8 Bolt-door fastening nut

5.7 Assembling the burner (Fig. 11)

The assembly of the burner to the door of the boiler must ensure perfect tightness to the products of combustion. Once having installed the burner on the boiler, the space between the burner draught tube and the refractory material on the door must be filled with the layer of ceramic fibre (A) supplied. This prevents the door from overheating and consequently from being irreversibly deformed.

The fuel connections to the burner must be located so as to allow the complete opening of the boiler door with the burner installed.

Table: RSW

<table>
<thead>
<tr>
<th>RSW</th>
<th>L min. (mm)</th>
<th>L max. (mm)</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>92-152</td>
<td>230</td>
<td>300</td>
<td>172</td>
</tr>
<tr>
<td>190-350</td>
<td>250</td>
<td>320</td>
<td>192</td>
</tr>
<tr>
<td>469-600</td>
<td>290</td>
<td>360</td>
<td>218</td>
</tr>
<tr>
<td>720-1060</td>
<td>320</td>
<td>390</td>
<td>239</td>
</tr>
<tr>
<td>1250-1480</td>
<td>320</td>
<td>390</td>
<td>248</td>
</tr>
<tr>
<td>1890</td>
<td>340</td>
<td>410</td>
<td>262</td>
</tr>
<tr>
<td>2360</td>
<td>340</td>
<td>470</td>
<td>262</td>
</tr>
<tr>
<td>3000-3600</td>
<td>350</td>
<td>480</td>
<td>272</td>
</tr>
</tbody>
</table>

5.8 Connecting the flame inspection window

(Fig. 12)

The flame inspection window features a pressure fitting (1) to be connected via a silicone hose or copper pipe to the outlet on the burner (2). This operation allows the air blown by the fan to cool the glass and prevent it from turning black.

Failure to connect the hose or pipe to the window may cause the glass to break.

5.9 Assembling the panels, models 92÷300

Sequence (Fig. 13)

a) Fasten the 2 supports (pos. 17) to the boiler plates using the corresponding screws and nuts.

b) Position the bottom side panels (pos. 2 and 4), hooking them to the support (pos. 17).

To know which of the two sides is the right or the left, refer to the hole for the cable gland plate (pos. 15), which must be facing the front of the boiler.

c) Position the top side panels (pos. 1 - 2 and 5 - 6), hooking them to the boiler supports.

d) Fasten the control panel to the front panel (pos. 9).

e) Rest the top panel (pos. 9), complete with the control panel, on the side panel (pos. 1), complete with springs, closing pins and nuts (pos. 20-21-22).

f) Insert the bulbs of the instruments into the sheaths, as shown in Fig. 14-21, and make the electrical connection between the control panel and the power line, burner and any pumps etc. The probes should be inserted fully into the corresponding sockets, to improve contact. Then secure the capillary tubes with the springs. Close the cover on the electrical panel, pass the burner plug through the side plate (pos. 15) and secure the cable with the cable gland supplied. Fasten the plates (pos. 15) with the screws (pos. 16).

5.10 Assembling the panels, models 350-1060

Sequence (Fig. 14)

a) Fasten the 2 supports (pos. 24) to the boiler plates using the corresponding screws and nuts.

b) Carefully position the bottom side panels (pos. 3 and 4 - 7 and 8), hooking them to the support (pos. 24). To know which of the two sides is the right or the left, refer to the hole for the cable gland plate (pos. 15), which must be facing the front of the boiler.

c) Position the top side panels (pos. 1 - 2 and 5 - 6), hooking them to the boiler supports.

d) Fasten the control panel to the front panel (pos. 9).

e) Rest the top panel (pos. 9), complete with the control panel, on the side panel (pos. 1), complete with springs, closing pins and nuts (pos. 20-21-22).

f) Insert the bulbs of the instruments into the sheaths, as shown in Fig. 14-21, and make the electrical connection between the control panel and the power line, burner and any pumps etc. The probes should be inserted fully into the corresponding sockets, to improve contact. Then secure the capillary tubes with the springs. Close the cover on the electrical panel, pass the burner plug through the side plate (pos. 15) and secure the cable with the cable gland supplied. Fasten the plates (pos. 15) with the screws (pos. 16).

f) Fit the support (pos. 23)

h) Fit the top panels (pos. 11-12-10), hooking them to the side panels (pos. 2-5-6) complete with springs, closing pins and nuts (pos. 20-21-22).

i) Fit the rear panel (pos. 14) to the boiler using the screws (pos. 19) and the nuts (pos. 25).

j) Fit the front panel (pos. 13) to the front door using the screws (pos. 17) and the nuts (pos. 18). The panel must be fitted before installing the burner.

k) Fasten the rating label to the boiler, see Chap. 1.4, after having cleaned and degreased the joint in question using a suitable solvent, and apply it so as to ensure perfect adhesion. Do not remove the rating label, as it will lose its adhesiveness.

The rating label is included in the document envelope.
6. STANDARD INSTRUMENT PANEL

6.1 Pannel (Fig. 15)
The instrument panel supplied, made from plastic with index of protection IP40, holds the control and safety instruments.
The boiler electrical system must be:
- designed and made by qualified personnel and connected to an earth system in compliance with the legislation in force,
- suitable for the maximum power input of the boiler, using cables with an adequate cross-section.
The earth wire in the power cables and connection cables to the burner must be a few mm longer than the other wires in the same cable. For the connections between the burner, the electrical panel and the power supply, use H07 RN-F cables for installation in view. For other types of installation or special environmental conditions, refer to the legislation in force. The composition and the diameter of the wires should be calculated based on the power input of the burner. To access the instruments, rotate the front panel (A). To access the terminal block and unwind the capillary tubes from the thermostats and the thermometer, remove the top panel (B), after having unscrewed the 2 side screws (C). The control thermostats (12-13 - Fig. 16) can be set by the user, using the knob at the front. The safety thermostat has a fixed setting and manual reset, as specified by Italian Min. Decree 1/12/75, collection R. The following are compulsory:
- the use of a two-pole thermal-magnetic over-load switch, mains disconnecting switch, compliant with the CEI-EN standards (minimum contact opening 3 mm)
- observe the polarity L1 (Phase) - N (Neutral)
- use cables with a minimum cross-section of 1.5 mm, complete with pointed end terminals.
- refer to the wiring diagrams in this booklet for any operations on the electrical system.
- connect the appliance to an effective earth system.
- the water pipes must not be used to earth the appliance.
The manufacturer is not liable for any damage due to the failure to earth the appliance and to observe the information provided on the wiring diagrams.

6.2 Panel front view (Fig. 16)
Key
1 Pump ON switch
2 Burner ON switch
3 Boiler ON switch
4 Test button
5 Safety pressure switch reset button
6 Boiler water temperature
7 Boiler on LED
8 1° burner flame LED
9 2° burner flame LED
10 Boiler shutdown LED
11 Safety pressure switch LED
12 2° boiler flame control thermostat TR1
13 1° boiler flame control thermostat TR1
14 Space for temperature controller

6.3 Diagram of the terminal block electrical connections
6.5 Notes on the connections

The panel power cable, type FG7 RN-F 3G1.5, is already connected as standard to the terminal block. In the event of replacement, make sure an appropriate cable is used, according to the legislation in force. The power supply to the burner is taken directly from the terminal block, single-phase and with a maximum current input of 3A. The power supply to the system water pump is taken directly from the terminal block, single-phase and with a maximum current input of 3A. If the current input of the burner or the pump is higher than envisaged, or the power supply is three-phase, power relays must be connected to the outputs on the terminal block. The remote start enabling signal allows the boiler to be operated from a distance. This is jumpered when not used. The external boiler safety enabling signal represents a further contact that is used to stop the burner. This is jumpered when not used. The room thermostat contact only controls the water pump. This is jumpered when not used.

7. PRINCIPLE DIAGRAM - SYSTEM FOR CENTRAL HEATING AND THE PRODUCTION OF DOMESTIC HOT WATER (Fig. 18)

The choice and installation of the components making up the system is left to the expertise of the installer, who must operate in a workmanlike manner and according to the legislation in force. The systems loaded with antifreeze require the use of water disconnecting devices. It should be stressed that the diagram in Fig. 18 is a principle diagram. In the case of different systems, please contact our After-Sales Service, which will provide you all the details required.

8. COMMISSIONING

8.1 Preliminary checks

Once having completed the water, electrical and fuel connections to the boiler, before starting, check that:
- The expansion vessel and the safety valve (if required) are connected correctly and cannot be shut-off.
- The bulbs of the thermostats and the thermometer are secured inside the corresponding sheaths.
- The turbulators are positioned in all the flues.
- The system is filled with water and completely vented of air.
- The pump or the pumps are working properly.
- The water, electrical, safety device and fuel connections have been performed in compliance with the national and local legislation in force.
- The burner is installed according to the instructions contained in the manual provided by the manufacturer.
- The mains voltage and frequency are compatible with the rating of the burner and the boiler’s electrical equipment.
- The system is able to absorb the quantity of heat that will be produced.
- The recirculating pump is installed, as described in par. 5.5.5.

8.2 Starting for the first time

After the positive outcome of the checks described in the previous paragraph, the burner can be ignited for the first time; this operation must be performed by a technician who has been authorised by the Manufacturer of the burner. The technician has full responsibility as regards the field of calibration, within the declared and
9. MAINTENANCE

9.1 General instructions
Periodical maintenance is essential for the safety, efficiency and long life of the appliance. All the operations must be carried out by qualified personnel. All cleaning and maintenance operations must be performed after having closed the fuel supply and disconnected the power supply. For the correct operation and maximum efficiency of the boiler, the combustion chamber, fire tubes and smokebox must be cleaned regularly.

9.2 Routine maintenance
The interval between cleaning operations must be established by the user based on the experience acquired on each individual system, consequently the maintenance intervals cannot be established in advance.
In any case, the following minimum intervals are recommended, according to the fuel used:
- Gas: once a year
- Oil: twice a year
- Fuel oil: every 300 hours of operation
In any case, any local maintenance standards in force should be observed. During the routine maintenance operations, after having removed the turbulators, brush the brush bundle and the furnace. Remove the deposits accumulated in the smokebox by opening the inspection doors. For more intense cleaning, remove the rear smokebox and, if deteriorated, replace the flue gas seal. Check that the condensate drain is not blocked. Ensure that the control and measurement devices serving the boiler are working correctly. Measure the amount of top-up water added, and after having analysed the water, add descaler. The calcium and magnesium salts dissolved in the water will, after repeated refills, cause deposits in the boiler and the overheating of the metal plate, with possible damage that is not attributable to materials or workmanship, and consequently not covered by the warranty.
After having completed the maintenance and cleaning operations and started the boiler again, check the tightness of the door and the smokebox, and in the event of gas leaks, replace the corresponding gaskets.

The operations carried out must be entered in the system logbook.

9.3 Special maintenance
Special maintenance to be performed at the end of the season or for extended shutdowns.
All the operations described in the previous chapter must be completed, plus the following additional operations:
- Check the condition of the turbulators for wear.
- After cleaning the flue gas circuit, wipe with a rag dipped in a diluted solution of caustic soda. After having left to dry, wipe all the surfaces with a rag dipped in oil.

8.3 Shutting down the boiler
- Set the temperature controller to the minimum.
- Disconnect power from the burner and close the fuel supply.
- Let the pumps operate until they are stopped by the temperature controller.
- Disconnect power from the electrical panel.

9.4 Cleaning the boiler (Fig. 19)
To clean the boiler, proceed as follows:
- Open the front door (1) and remove the turbulators (2).
- Clean the inside surfaces of the combustion chamber and the flue gas path using a brush (3) or other suitable implements.
- Remove the deposits accumulated in the smokebox by opening the inspection door (4).
- For more intense cleaning, remove the smokebox cover (5) and replace the gasket before reassembling.
- Periodically check that the condensate drain (6) is not blocked.

9.5 Checking the operation of the boiler
Before starting and running the functional tests on the boiler, make sure that:
- The turbulators are positioned against the exchanger tubes.
- The cocks in the water circuit and on the fuel lines are open.
- Fuel is available.
- The expansion vessel is suitably filled.
- The pressure of the water circuit, when cold, is more than 1 bar and less than the maximum limit allowed for the boiler.
- The water circuits have been vented.
- The electrical connections to the mains power and the components (burner, pump, control panel, thermostats etc.) have been completed.
- The phase-neutral connection must be observed, and the earth must be connected.
After having performed the operations described above, the following operations are necessary to start the boiler:
- If the system is fitted with a temperature controller or timer-thermostat, check that these are “on”.
- Set the room timer-thermostat or the temperature controller to the desired temperature.
- Move the main system switch to “on”.
- Set the boiler thermostat located on the control panel.
- Move the main switch on the control panel to “on” and check that the green indicator light comes on.

The boiler will run the ignition phase and will remain on until the set temperature has been reached. If problems occur during ignition or operation, the boiler will “LOCKOUT”, as signalled by the red light on the burner and the red indicator on the control panel. After a “LOCKOUT”, wait around 30 seconds before restoring the ignition conditions. To restore the ignition conditions, press the burner “button/light” and wait for the flame to ignite. If this operation fails, it can be repeated a maximum of 2-3 times, then check:
- The information provided in the burner instruction booklet.
- The chapter on “CHECKING THE OPERATION OF THE BOILER”.
- The electrical connections described on the diagram supplied with the control panel.
When the boiler has started, check that it stops and starts again:
- Adjust the setting of the boiler thermostat.
- Move the main switch on the control panel.
- Set the room thermostat, the timer or the temperature controller.
- Check that the pumps are not blocked and rotate in the correct direction.
- Check the total shutdown of the boiler using the main system switch.
If all the conditions are correct, restart the appliance, check the combustion (flue gas analysis), the fuel rate and the tightness of the gaskets on the door and the smokebox.

9.6 Checking the operation of the burner
- Refer to the burner instruction manual.
- Follow all the local legislation in force on burner maintenance.

9.7 Troubleshooting
The following is a list with information on the main faults or problems that may occur during the operation of the boiler, showing the possible causes and corresponding solutions.
FAULT

THE BOILER DIRTIES QUITE EASILY

<table>
<thead>
<tr>
<th>CAUSE</th>
<th>SOLUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Burner poorly adjusted</td>
<td>Check the burner adjustment (flue gas analysis)</td>
</tr>
<tr>
<td>Flue blocked</td>
<td>Clean the flue gas path and the flue</td>
</tr>
<tr>
<td>Burner air intake path dirty</td>
<td>Clean the burner air intake</td>
</tr>
</tbody>
</table>

THE BOILER DOES NOT REACH THE SET TEMPERATURE

<table>
<thead>
<tr>
<th>CAUSE</th>
<th>SOLUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boiler body dirty</td>
<td>Clean the flue gas path</td>
</tr>
<tr>
<td>Boiler/burner combination</td>
<td>Check the data and adjustments</td>
</tr>
<tr>
<td>Burner flow-rate insufficient</td>
<td>Check the burner adjustment</td>
</tr>
<tr>
<td>Control thermostat</td>
<td>Check correct operation</td>
</tr>
</tbody>
</table>

BOILER THERMAL SAFETY SHUTDOWN WITH INDICATOR LIGHT ON THE CONTROL PANEL

<table>
<thead>
<tr>
<th>CAUSE</th>
<th>SOLUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control thermostat</td>
<td>Check correct operation</td>
</tr>
<tr>
<td></td>
<td>Check the set temperature</td>
</tr>
<tr>
<td></td>
<td>Check the wiring</td>
</tr>
<tr>
<td></td>
<td>Check the probe bulbs</td>
</tr>
<tr>
<td>No water</td>
<td>Check the circuit pressure</td>
</tr>
<tr>
<td>Air present</td>
<td>Check the vent valve</td>
</tr>
</tbody>
</table>

THE BOILER REACHES THE SET TEMPERATURE BUT THE CENTRAL HEATING SYSTEM IS COLD

<table>
<thead>
<tr>
<th>CAUSE</th>
<th>SOLUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air in the system</td>
<td>Vent the system</td>
</tr>
<tr>
<td>Pump fault</td>
<td>Reset the pump</td>
</tr>
<tr>
<td>Minimum thermostat (if featured)</td>
<td>Check the set temperature</td>
</tr>
</tbody>
</table>

ODOR OF UNBURNED SUBSTANCES

<table>
<thead>
<tr>
<th>CAUSE</th>
<th>SOLUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flue gas leaking into the environment</td>
<td>Check and if necessary clean the boiler body</td>
</tr>
<tr>
<td></td>
<td>Check and if necessary clean the flue</td>
</tr>
<tr>
<td></td>
<td>Check the tightness of the boiler and the flue</td>
</tr>
</tbody>
</table>

FREQUENT ACTIVATION OF THE SAFETY VALVE

<table>
<thead>
<tr>
<th>CAUSE</th>
<th>SOLUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>System circuit pressure</td>
<td>Check the fill pressure</td>
</tr>
<tr>
<td></td>
<td>Check the system circuit</td>
</tr>
<tr>
<td></td>
<td>Check the calibration</td>
</tr>
<tr>
<td></td>
<td>Check the set temperature</td>
</tr>
<tr>
<td>System expansion vessel</td>
<td>Check</td>
</tr>
</tbody>
</table>
Per la messa a terra del corpo caldaia è previsto sulla testata anteriore un punto di connessione.

A connection point is provided on the front head for earthing the boiler body.

Une connexion est prévue sur la tête avant pour la mise à la terre du corps de chaudière.

Para la puesta a tierra del cuerpo de la caldera está previsto en el anterior un punto de conexión.

Der findes et forbindelsessted til kedelhvedelementets jordforbindelse på forhovedet.

Für die Erdung des Kesselkörpers ist an der vorderen Stirnseite ein Anschluss vorgesehen.

Voor de aardaansluiting van het ketellichaam is een aansluitpunt voorzien op het voorste kopstuk.

 Está previsto na cabeça frontal um ponto de conexão para a ligação de terra do corpo da caldeira.

För att jorda värmepannans struktur, har en anslutningspunkt förutsetts på främre överstycket.

Etummaisessa päädyssä on liitospiste lämmitystilan rungon maadoitusta varten.

Точка подключения на передней плите для заземления корпуса котла.